62 research outputs found

    Video-driven speech reconstruction using generative adversarial networks

    Get PDF
    Speech is a means of communication which relies on both audio and visual information. The absence of one modality can often lead to confusion or misinterpretation of information. In this paper we present an end-to-end temporal model capable of directly synthesising audio from silent video, without needing to transform to-and-from intermediate features. Our proposed approach, based on GANs is capable of producing natural sounding, intelligible speech which is synchronised with the video. The performance of our model is evaluated on the GRID dataset for both speaker dependent and speaker independent scenarios. To the best of our knowledge this is the first method that maps video directly to raw audio and the first to produce intelligible speech when tested on previously unseen speakers. We evaluate the synthesised audio not only based on the sound quality but also on the accuracy of the spoken words

    Realistic speech-driven facial animation with GANs

    Get PDF
    Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution of each component in our model using an ablation study and we provide insights into the latent representation of the model. The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well as their ability to generate natural blinks

    Adaptive deblurring of surveillance video sequences that deteriorate over time

    Get PDF
    We present a method for restoring the recordings obtained from surveillance cameras whose quality deteriorates due to dirt or water that gathers on the camera’s lens. The method is designed to operate in the surveillance setting and makes use of good quality frames from the beginning of the recorded sequence to remove the blur at later stages caused by the dirty lens. A background subtraction method allows us to obtain a stable background of the scene. Based on this background, a multiframe blind deconvolution algorithm is used to estimate the Point Spread Function (PSF) of the blur. Once the PSF is obtained it can be used to deblur the entire scene. This restoration method was tested on both synthetic and real data with improvements of 15 dB in PSNR being achieved by using clean frames from the beginning of the recorded sequence

    Speech-driven facial animations improve speech-in-noise comprehension of humans

    Get PDF
    Understanding speech becomes a demanding task when the environment is noisy. Comprehension of speech in noise can be substantially improved by looking at the speaker’s face, and this audiovisual benefit is even more pronounced in people with hearing impairment. Recent advances in AI have allowed to synthesize photorealistic talking faces from a speech recording and a still image of a person’s face in an end-to-end manner. However, it has remained unknown whether such facial animations improve speech-in-noise comprehension. Here we consider facial animations produced by a recently introduced generative adversarial network (GAN), and show that humans cannot distinguish between the synthesized and the natural videos. Importantly, we then show that the end-to-end synthesized videos significantly aid humans in understanding speech in noise, although the natural facial motions yield a yet higher audiovisual benefit. We further find that an audiovisual speech recognizer (AVSR) benefits from the synthesized facial animations as well. Our results suggest that synthesizing facial motions from speech can be used to aid speech comprehension in difficult listening environments

    End-to-End Speech-Driven Facial Animation with Temporal GANs

    No full text
    Speech-driven facial animation is the process which uses speech signals to automatically synthesize a talking character. The majority of work in this domain creates a mapping from audio features to visual features. This often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present a system for generating videos of a talking head, using a still image of a person and an audio clip containing speech, that doesn't rely on any handcrafted intermediate features. To the best of our knowledge, this is the first method capable of generating subject independent realistic videos directly from raw audio. Our method can generate videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. We achieve this by using a temporal GAN with 2 discriminators, which are capable of capturing different aspects of the video. The effect of each component in our system is quantified through an ablation study. The generated videos are evaluated based on their sharpness, reconstruction quality, and lip-reading accuracy. Finally, a user study is conducted, confirming that temporal GANs lead to more natural sequences than a static GAN-based approach

    Visually guided self supervised learning of speech representations

    Get PDF
    Self supervised representation learning has recently attracted a lot of research interest for both the audio and visual modalities. However, most works typically focus on a particular modality or feature alone and there has been very limited work that studies the interaction between the two modalities for learning self supervised representations. We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech. We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment. Through this process, the audio encoder network learns useful speech representations that we evaluate on emotion recognition and speech recognition. We achieve state of the art results for emotion recognition and competitive results for speech recognition. This demonstrates the potential of visual supervision for learning audio representations as a novel way for self-supervised learning which has not been explored in the past. The proposed unsupervised audio features can leverage a virtually unlimited amount of training data of unlabelled audiovisual speech and have a large number of potentially promising applications
    • …
    corecore